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Paper 4, Section I

5K Statistical Modelling
Consider the normal linear model where the n-vector of responses Y satisfies

Y = Xβ + ε with ε ∼ Nn(0, σ
2I) and X is an n × p design matrix with full column

rank. Write down a (1− α)-level confidence set for β.

Define the Cook’s distance for the observation (Yi, xi) where x
T
i is the ith row of X,

and give its interpretation in terms of confidence sets for β.

In the model above with n = 100 and p = 4, you observe that one observation has
Cook’s distance 3.1. Would you be concerned about the influence of this observation?
Justify your answer.

[Hint: You may find some of the following facts useful:

1. If Z ∼ χ2
4, then P(Z 6 1.06) = 0.1, P(Z 6 7.78) = 0.9.

2. If Z ∼ F4,96, then P(Z 6 0.26) = 0.1, P(Z 6 2.00) = 0.9.

3. If Z ∼ F96,4, then P(Z 6 0.50) = 0.1, P(Z 6 3.78) = 0.9.]
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Paper 3, Section I

5K Statistical Modelling
In an experiment to study factors affecting the production of the plastic polyvinyl

chloride (PVC), three experimenters each used eight devices to produce the PVC and
measured the sizes of the particles produced. For each of the 24 combinations of device
and experimenter, two size measurements were obtained.

The experimenters and devices used for each of the 48 measurements are stored in
R as factors in the objects experimenter and device respectively, with the measurements
themselves stored in the vector psize. The following analysis was performed in R.

> fit0 <- lm(psize ~ experimenter + device)

> fit <- lm(psize ~ experimenter + device + experimenter:device)

> anova(fit0, fit)

Analysis of Variance Table

Model 1: psize ~ experimenter + device

Model 2: psize ~ experimenter + device + experimenter:device

Res.Df RSS Df Sum of Sq F Pr(>F)

1 38 49.815

2 24 35.480 14 14.335 0.6926 0.7599

Let X and X0 denote the design matrices obtained by model.matrix(fit) and
model.matrix(fit0) respectively, and let Y denote the response psize. Let P and P0

denote orthogonal projections onto the column spaces of X and X0 respectively.

For each of the following quantities, write down their numerical values if they appear
in the analysis of variance table above; otherwise write ‘unknown’.

1. ‖(I − P )Y ‖2

2. ‖X(XTX)−1XTY ‖2

3. ‖(I − P0)Y ‖2 − ‖(I − P )Y ‖2

4.
‖(P − P0)Y ‖2/14
‖(I − P )Y ‖2/24

5.
∑48

i=1 Yi/48

Out of the two models that have been fitted, which appears to be the more
appropriate for the data according to the analysis performed, and why?
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Paper 2, Section I

5K Statistical Modelling
Define the concept of an exponential dispersion family. Show that the family of

scaled binomial distributions 1
nBin(n, p), with p ∈ (0, 1) and n ∈ N, is of exponential

dispersion family form.

Deduce the mean of the scaled binomial distribution from the exponential dispersion
family form.

What is the canonical link function in this case?

Paper 1, Section I

5K Statistical Modelling
Write down the model being fitted by the following R command, where y ∈ {0, 1, 2, . . .}n

and X is an n× p matrix with real-valued entries.

fit <- glm(y ~ X, family = poisson)

Write down the log-likelihood for the model. Explain why the command

sum(y) - sum(predict(fit, type = "response"))

gives the answer 0, by arguing based on the log-likelihood you have written down.
[Hint: Recall that if Z ∼ Pois(µ) then

P(Z = k) =
µke−µ

k!

for k ∈ {0, 1, 2, . . .}.]
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Paper 4, Section II

13K Statistical Modelling
In a study on infant respiratory disease, data are collected on a sample of 2074

infants. The information collected includes whether or not each infant developed a
respiratory disease in the first year of their life; the gender of each infant; and details
on how they were fed as one of three categories (breast-fed, bottle-fed and supplement).
The data are tabulated in R as follows:

disease nondisease gender food

1 77 381 Boy Bottle-fed

2 19 128 Boy Supplement

3 47 447 Boy Breast-fed

4 48 336 Girl Bottle-fed

5 16 111 Girl Supplement

6 31 433 Girl Breast-fed

Write down the model being fit by the R commands on the following page:
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> total <- disease + nondisease

> fit <- glm(disease/total ~ gender + food, family = binomial,

+ weights = total)

The following (slightly abbreviated) output from R is obtained.

> summary(fit)

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -1.6127 0.1124 -14.347 < 2e-16 ***

genderGirl -0.3126 0.1410 -2.216 0.0267 *

foodBreast-fed -0.6693 0.1530 -4.374 1.22e-05 ***

foodSupplement -0.1725 0.2056 -0.839 0.4013

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 26.37529 on 5 degrees of freedom

Residual deviance: 0.72192 on 2 degrees of freedom

Briefly explain the justification for the standard errors presented in the output above.

Explain the relevance of the output of the following R code to the data being studied,
justifying your answer:

> exp(c(-0.6693 - 1.96*0.153, -0.6693 + 1.96*0.153))

[1] 0.3793940 0.6911351

[Hint: It may help to recall that if Z ∼ N(0, 1) then P(Z > 1.96) = 0.025.]

Let D1 be the deviance of the model fitted by the following R command.

> fit1 <- glm(disease/total ~ gender + food + gender:food,

+ family = binomial, weights = total)

What is the numerical value of D1? Which of the two models that have been fitted should
you prefer, and why?
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Paper 1, Section II

13K Statistical Modelling
Consider the normal linear model where the n-vector of responses Y satisfies

Y = Xβ + ε with ε ∼ Nn(0, σ
2I). Here X is an n × p matrix of predictors with full

column rank where n > p+ 3, and β ∈ Rp is an unknown vector of regression coefficients.
Let X0 be the matrix formed from the first p0 < p columns of X, and partition β as
β = (βT

0 , β
T
1 )

T where β0 ∈ Rp0 and β1 ∈ Rp−p0. Denote the orthogonal projections onto
the column spaces of X and X0 by P and P0 respectively.

It is desired to test the null hypothesisH0 : β1 = 0 against the alternative hypothesis
H1 : β1 6= 0. Recall that the F -test for testing H0 against H1 rejects H0 for large values
of

F =
‖(P − P0)Y ‖2/(p − p0)

‖(I − P )Y ‖2/(n − p)
.

Show that (I − P )(P − P0) = 0, and hence prove that the numerator and denominator of
F are independent under either hypothesis.

Show that

Eβ,σ2(F ) =
(n − p)(τ2 + 1)

n− p− 2
,

where τ2 =
‖(P − P0)Xβ‖2

(p− p0)σ2
.

[In this question you may use the following facts without proof: P − P0 is an or-
thogonal projection with rank p − p0; any n × n orthogonal projection matrix Π satisfies
‖Πε‖2 ∼ σ2χ2

ν , where ν = rank(Π); and if Z ∼ χ2
ν then E(Z−1) = (ν − 2)−1 when ν > 2.]
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Paper 4, Section I

5J Statistical Modelling
The output X of a process depends on the levels of two adjustable variables: A, a

factor with four levels, and B, a factor with two levels. For each combination of a level of
A and a level of B, nine independent values of X are observed.

Explain and interpret the R commands and (abbreviated) output below. In
particular, describe the model being fitted, and describe and comment on the hypothesis
tests performed under the summary and anova commands.

> fit1 <- lm(x ˜ a+b)

> summary(fit1)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 2.5445 0.2449 10.39 6.66e-16 ***

a2 -5.6704 0.4859 -11.67 < 2e-16 ***

a3 4.3254 0.3480 12.43 < 2e-16 ***

a4 -0.5003 0.3734 -1.34 0.0923

b2 -3.5689 0.2275 -15.69 < 2e-16 ***

> anova(fit1)

Response: x

Df Sum Sq mean Sq F value Pr(>F)

a 3 71.51 23.84 17.79 1.34e-8 ***

b 1 105.11 105.11 78.44 6.91e-13 ***

Residuals 67 89.56 1.34
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Paper 3, Section I

5J Statistical Modelling
Consider the linear model Y = Xβ + ǫ where Y = (Y1, . . . , Yn)

T, β = (β1, . . . , βp)
T,

and ǫ = (ǫ1, . . . , ǫn)
T, with ǫ1, . . . , ǫn independent N(0, σ2) random variables. The (n× p)

matrix X is known and is of full rank p < n. Give expressions for the maximum likelihood
estimators β̂ and σ̂2 of β and σ2 respectively, and state their joint distribution. Show that
β̂ is unbiased whereas σ̂2 is biased.

Suppose that a new variable Y ∗ is to be observed, satisfying the relationship

Y ∗ = x∗Tβ + ǫ∗ ,

where x∗ (p × 1) is known, and ǫ∗ ∼ N(0, σ2) independently of ǫ. We propose to predict
Y ∗ by Ỹ = x∗Tβ̂. Identify the distribution of

Y ∗ − Ỹ

τ σ̃
,

where

σ̃2 =
n

n− p
σ̂2 ,

τ2 = x∗T(XTX)−1x∗ + 1 .

Paper 2, Section I

5J Statistical Modelling
Consider a linear model Y = Xβ+ǫ, where Y and ǫ are (n×1) with ǫ ∼ Nn(0, σ

2I),
β is (p × 1), and X is (n × p) of full rank p < n. Let γ and δ be sub-vectors of β. What
is meant by orthogonality between γ and δ?

Now suppose

Yi = β0 + β1xi + β2x
2
i + β3P3(xi) + ǫi (i = 1, . . . , n) ,

where ǫ1, . . . , ǫn are independent N(0, σ2) random variables, x1, . . . , xn are real-valued
known explanatory variables, and P3(x) is a cubic polynomial chosen so that β3 is
orthogonal to (β0, β1, β2)

T and β1 is orthogonal to (β0, β2)
T.

Let β̃ = (β0, β2, β1, β3)
T. Describe the matrix X̃ such that Y = X̃β̃ + ǫ. Show that

X̃TX̃ is block diagonal. Assuming further that this matrix is non-singular, show that the
least-squares estimators of β1 and β3 are, respectively,

β̂1 =

∑n
i=1 xiYi∑n
i=1 x

2
i

and β̂3 =

∑n
i=1 P3(xi)Yi∑n
i=1 P3(xi)2

.

Part II, 2013 List of Questions [TURN OVER



90

Paper 1, Section I

5J Statistical Modelling
Variables Y1, . . . , Yn are independent, with Yi having a density p(y |µi) governed by

an unknown parameter µi. Define the deviance for a model M that imposes relationships
between the (µi).

From this point on, suppose Yi ∼ Poisson(µi). Write down the log-likelihood of data
y1, . . . , yn as a function of µ1, . . . , µn.

Let µ̂i be the maximum likelihood estimate of µi under model M . Show that the
deviance for this model is given by

2
n∑

i=1

{
yi log

yi
µ̂i

− (yi − µ̂i)

}
.

Now suppose that, underM , log µi = βTxi, i = 1, . . . , n, where x1, . . . , xn are known
p-dimensional explanatory variables and β is an unknown p-dimensional parameter. Show
that µ̂ := (µ̂1, . . . , µ̂n)

T satisfies XTy = XTµ̂, where y = (y1, . . . , yn)
T and X is the (n×p)

matrix with rows xT1 , . . . , x
T
n , and express this as an equation for the maximum likelihood

estimate β̂ of β. [You are not required to solve this equation.]
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Paper 4, Section II

13J Statistical Modelling
Let f0 be a probability density function, with cumulant generating function K.

Define what it means for a random variable Y to have a model function of exponential
dispersion family form, generated by f0.

A random variable Y is said to have an inverse Gaussian distribution, with
parameters φ and λ (both positive), if its density function is

f(y;φ, λ) =

√
λ√

2πy3
e
√
λφ exp

{
−1

2

(
λ

y
+ φy

)}
(y > 0).

Show that the family of all inverse Gaussian distributions for Y is of exponential dispersion
family form. Deduce directly the corresponding expressions for E(Y ) and Var(Y ) in terms
of φ and λ. What are the corresponding canonical link function and variance function?

Consider a generalized linear model, M , for independent variables Yi (i = 1, . . . , n),
whose random component is defined by the inverse Gaussian distribution with link function
g(µ) = log(µ): thus g(µi) = xTi β, where β = (β1, . . . , βp)

T is the vector of unknown
regression coefficients and xi = (xi1, . . . , xip)

T is the vector of known values of the
explanatory variables for the ith observation. The vectors xi (i = 1, . . . , n) are linearly
independent. Assuming that the dispersion parameter is known, obtain expressions for
the score function and Fisher information matrix for β. Explain how these can be used to
compute the maximum likelihood estimate β̂ of β.
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Paper 1, Section II

13J Statistical Modelling
A cricket ball manufacturing company conducts the following experiment. Every

day, a bowling machine is set to one of three levels, “Medium”, “Fast” or “Spin”, and
then bowls 100 balls towards the stumps. The number of times the ball hits the stumps
and the average wind speed (in kilometres per hour) during the experiment are recorded,
yielding the following data (abbreviated):

Day Wind Level Stumps

1 10 Medium 26

2 8 Medium 37
...

...
...

...

50 12 Medium 32

51 7 Fast 31
...

...
...

...

120 3 Fast 28

121 5 Spin 35
...

...
...

...

150 6 Spin 31

Write down a reasonable model for Y1, . . . , Y150, where Yi is the number of times the ball
hits the stumps on the ith day. Explain briefly why we might want to include interactions
between the variables. Write R code to fit your model.

The company’s statistician fitted her own generalized linear model using R, and
obtained the following summary (abbreviated):

>summary(ball)

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.37258 0.05388 -6.916 4.66e-12 ***

Wind 0.09055 0.01595 5.676 1.38e-08 ***

LevelFast -0.10005 0.08044 -1.244 0.213570

LevelSpin 0.29881 0.08268 3.614 0.000301 ***

Wind:LevelFast 0.03666 0.02364 1.551 0.120933

Wind:LevelSpin -0.07697 0.02845 -2.705 0.006825 **

Why are LevelMedium and Wind:LevelMedium not listed?

Suppose that, on another day, the bowling machine is set to “Spin”, and the
wind speed is 5 kilometres per hour. What linear function of the parameters should
the statistician use in constructing a predictor of the number of times the ball hits the
stumps that day?

Based on the above output, how might you improve the model? How could you fit
your new model in R?
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Paper 4, Section I

5K Statistical Modelling
Define the concepts of an exponential dispersion family and the corresponding

variance function. Show that the family of Poisson distributions with parameter λ > 0
is an exponential dispersion family. Find the corresponding variance function and deduce
from it expressions for E(Y ) and Var(Y ) when Y ∼ Pois(λ). What is the canonical link
function in this case?

Paper 3, Section I

5K Statistical Modelling
Consider the linear model

Yi = β0 + β1xi1 + β2xi2 + εi,

for i = 1, 2, . . . , n, where the εi are independent and identically distributed with N(0, σ2)
distribution. What does it mean for the pair β1 and β2 to be orthogonal? What does it
mean for all the three parameters β0, β1 and β2 to be mutually orthogonal? Give necessary
and sufficient conditions on (xi1)

n
i=1, (xi2)

n
i=1 so that β0, β1 and β2 are mutually orthogonal.

If β0, β1, β2 are mutually orthogonal, find the joint distribution of the corresponding
maximum likelihood estimators β̂0, β̂1 and β̂2.
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5K Statistical Modelling
The purpose of the following study is to investigate differences among certain treatments
on the lifespan of male fruit flies, after allowing for the effect of the variable ‘thorax length’
(thorax) which is known to be positively correlated with lifespan. Data was collected on
the following variables:

longevity lifespan in days

thorax (body) length in mm

treat a five level factor representing the treatment groups. The levels were labelled
as follows: “00”, “10”, “80”, “11”, “81”.

No interactions were found between thorax length and the treatment factor. A
linear model with thorax as the covariate, treat as a factor (having the above 5 levels)
and longevity as the response was fitted and the following output was obtained. There
were 25 males in each of the five groups, which were treated identically in the provision of
fresh food.

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -49.98 10.61 -4.71 6.7e-06

treat10 2.65 2.98 0.89 0.37

treat11 -7.02 2.97 -2.36 0.02

treat80 3.93 3.00 1.31 0.19

treat81 -19.95 3.01 -6.64 1.0e-09

thorax 135.82 12.44 10.92 <2e-16

Residual standard error: 10.5 on 119 degrees of freedom

Multiple R-Squared: 0.656, Adjusted R-squared: 0.642

F-statistics: 45.5 on 5 and 119 degrees of freedom, p-value: 0

(a) Assuming the same treatment, how much longer would you expect a fly with a
thorax length 0.1mm greater than another to live?

(b) What is the predicted difference in longevity between a male fly receiving treatment
treat10 and treat81 assuming they have the same thorax length?

(c) Because the flies were randomly assigned to the five groups, the distribution of
thorax lengths in the five groups are essentially equal. What disadvantage would
the investigators have incurred by ignoring the thorax length in their analysis (i.e.,
had they done a one-way ANOVA instead)?

(d) The residual-fitted plot is shown in the left panel of Figure 1 overleaf. Is it possible
to determine if the regular residuals or the studentized residuals have been used to
construct this plot? Explain.

(e) The Box–Cox procedure was used to determine a good transformation for this
data. The plot of the log-likelihood for λ is shown in the right panel of Figure 1.
What transformation should be used to improve the fit and yet retain some
interpretability?
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Paper 1, Section I

5K Statistical Modelling
Let Y1, . . . , Yn be independent with Yi ∼ 1

ni
Bin(ni, µi), i = 1, . . . , n, and

log

(
µi

1− µi

)
= x⊤i β , (1)

where xi is a p × 1 vector of regressors and β is a p × 1 vector of parameters. Write
down the likelihood of the data Y1, . . . , Yn as a function of µ = (µ1, . . . , µn). Find the
unrestricted maximum likelihood estimator of µ, and the form of the maximum likelihood
estimator µ̂ = (µ̂1, . . . , µ̂n) under the logistic model (1).

Show that the deviance for a comparison of the full (saturated) model to the
generalised linear model with canonical link (1) using the maximum likelihood estimator

β̂ can be simplified to

D(y; µ̂) = −2
n∑

i=1

[
niyix

⊤
i β̂ − ni log(1− µ̂i)

]
.

Finally, obtain an expression for the deviance residual in this generalised linear
model.
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Paper 4, Section II

13K Statistical Modelling
Let (X1, Y1), . . . , (Xn, Yn) be jointly independent and identically distributed with

Xi ∼ N(0, 1) and conditional on Xi = x, Yi ∼ N(xθ, 1), i = 1, 2, . . . , n.

(a) Write down the likelihood of the data (X1, Y1), . . . , (Xn, Yn), and find the maxi-
mum likelihood estimate θ̂ of θ. [You may use properties of conditional probabil-
ity/expectation without providing a proof.]

(b) Find the Fisher information I(θ) for a single observation, (X1, Y1).

(c) Determine the limiting distribution of
√
n(θ̂ − θ). [You may use the result on

the asymptotic distribution of maximum likelihood estimators, without providing a
proof.]

(d) Give an asymptotic confidence interval for θ with coverage (1−α) using your answers
to (b) and (c).

(e) Define the observed Fisher information. Compare the confidence interval in part (d)
with an asymptotic confidence interval with coverage (1−α) based on the observed
Fisher information.

(f) Determine the exact distribution of
(∑n

i=1X
2
i

)1/2
(θ̂− θ) and find the true coverage

probability for the interval in part (e). [Hint. Condition on X1,X2, . . . ,Xn and
use the following property of conditional expectation: for U, V random vectors, any
suitable function g, and x ∈ R,

P{g(U, V ) 6 x} = E[P{g(U, V ) 6 x|V }].]
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13K Statistical Modelling
The treatment for a patient diagnosed with cancer of the prostate depends on whether
the cancer has spread to the surrounding lymph nodes. It is common to operate on the
patient to obtain samples from the nodes which can then be analysed under a microscope.
However it would be preferable if an accurate assessment of nodal involvement could
be made without surgery. For a sample of 53 prostate cancer patients, a number of
possible predictor variables were measured before surgery. The patients then had surgery
to determine nodal involvement. We want to see if nodal involvement can be accurately
predicted from the available variables and determine which ones are most important. The
variables take the values 0 or 1.

r An indicator 0=no/1=yes of nodal involvement.

aged The patient’s age, split into less than 60 (=0) and 60 or over (=1).

stage A measurement of the size and position of the tumour observed by palpation with
the fingers. A serious case is coded as 1 and a less serious case as 0.

grade Another indicator of the seriousness of the cancer which is determined by a pathology
reading of a biopsy taken by needle before surgery. A value of 1 indicates a more
serious case of cancer.

xray Another measure of the seriousness of the cancer taken from an X-ray reading. A
value of 1 indicates a more serious case of cancer.

acid The level of acid phosphatase in the blood serum where 1=high and 0=low.

A binomial generalised linear model with a logit link was fitted to the data to predict
nodal involvement and the following output obtained:

Deviance Residuals:

Min 1Q Median 3Q Max

-2.332 -0.665 -0.300 0.639 2.150

Coefficients:

Estimate Std. Error t value Pr(>|z|)

(Intercept) -3.079 0.987 -3.12 0.0018

aged -0.292 0.754 -0.39 0.6988

grade 0.872 0.816 1.07 0.2850

stage 1.373 0.784 1.75 0.0799

xray 1.801 0.810 2.22 0.0263

acid 1.684 0.791 2.13 0.0334

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 70.252 on 52 degrees of freedom

Residual deviance: 47.611 on 47 degrees of freedom

AIC: 59.61

Number of Fisher Scoring iterations: 5
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(a) Give an interpretation of the coefficient of xray.

(b) Give the numerical value of the sum of the squared deviance residuals.

(c) Suppose that the predictors, stage, grade and xray are positively correlated.
Describe the effect that this correlation is likely to have on our ability to determine
the strength of these predictors in explaining the response.

(d) The probability of observing a value of 70.252 under a Chi-squared distribution with
52 degrees of freedom is 0.047. What does this information tell us about the null
model for this data? Justify your answer.

(e) What is the lowest predicted probability of the nodal involvement for any future
patient?

(f) The first plot in Figure 1 shows the (Pearson) residuals and the fitted values. Explain
why the points lie on two curves.

(g) The second plot in Figure 1 shows the value of β̂ − β̂(i) where (i) indicates that
patient i was dropped in computing the fit. The values for each predictor, including
the intercept, are shown. Could a single case change our opinion of which predictors
are important in predicting the response?
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Paper 1, Section I

5J Statistical Modelling
Let Y1, . . . , Yn be independent identically distributed random variables with model

function f(y, θ), y ∈ Y, θ ∈ Θ ⊆ R, and denote by Eθ and Varθ expectation and
variance under f(y, θ), respectively. Define Un(θ) =

∑n
i=1

∂
∂θ log f(Yi, θ). Prove that

EθUn(θ) = 0. Show moreover that if T = T (Y1, . . . , Yn) is any unbiased estimator of θ,
then its variance satisfies Varθ(T ) > (nVarθ(U1(θ))

−1. [You may use the Cauchy–Schwarz
inequality without proof, and you may interchange differentiation and integration without
justification if necessary.]

Paper 2, Section I

5J Statistical Modelling
Let f0 be a probability density function, with cumulant generating function K.

Define what it means for a random variable Y to have a model function of exponential
dispersion family form, generated by f0. Compute the cumulant generating function KY

of Y and deduce expressions for the mean and variance of Y that depend only on first and
second derivatives of K.

Paper 3, Section I

5J Statistical Modelling
Define a generalised linear model for a sample Y1, . . . , Yn of independent random

variables. Define further the concept of the link function. Define the binomial regression
model with logistic and probit link functions. Which of these is the canonical link function?
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Paper 4, Section I

5J Statistical Modelling
The numbers of ear infections observed among beach and non-beach (mostly pool)

swimmers were recorded, along with explanatory variables: frequency, location, age, and
sex. The data are aggregated by group, with a total of 24 groups defined by the explanatory
variables.

freq F = frequent, NF = infrequent
loc NB = non-beach, B = beach
age 15-19, 20-24, 24-29
sex F = female, M = male
count the number of infections reported over a fixed time period
n the total number of swimmers

The data look like this:

count n freq loc sex age

1 68 31 F NB M 15-19

2 14 4 F NB F 15-19

3 35 12 F NB M 20-24

4 16 11 F NB F 20-24

[...]

23 5 15 NF B M 25-29

24 6 6 NF B F 25-29

Let µj denote the expected number of ear infections of a person in group j. Explain
why it is reasonable to model countj as Poisson with mean njµj .

We fit the following Poisson model:

log(E(countj)) = log(njµj) = log(nj) + xjβ,

where log(nj) is an offset, i.e. an explanatory variable with known coefficient 1.

R produces the following (abbreviated) summary for the main effects model:

Call:

glm(formula = count ~ freq + loc + age + sex, family = poisson, offset = log(n))

[...]

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 0.48887 0.12271 3.984 6.78e-05 ***

freqNF -0.61149 0.10500 -5.823 5.76e-09 ***

locNB 0.53454 0.10668 5.011 5.43e-07 ***

age20-24 -0.37442 0.12836 -2.917 0.00354 **

age25-29 -0.18973 0.13009 -1.458 0.14473

sexM -0.08985 0.11231 -0.800 0.42371

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

[...]
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Why are expressions freqF, locB, age15-19, and sexF not listed?

Suppose that we plan to observe a group of 20 female, non-frequent, beach
swimmers, aged 20-24. Give an expression (using the coefficient estimates from the model
fitted above) for the expected number of ear infections in this group.

Now, suppose that we allow for interaction between variables age and sex. Give the
R command for fitting this model. We test for the effect of this interaction by producing
the following (abbreviated) ANOVA table:

Resid. Df Resid. Dev Df Deviance P(>|Chi|)

1 18 51.714

2 16 44.319 2 7.3948 0.02479 *

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Briefly explain what test is performed, and what you would conclude from it. Does
either of these models fit the data well?
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Paper 1, Section II

13J Statistical Modelling
The data consist of the record times in 1984 for 35 Scottish hill races. The columns

list the record time in minutes, the distance in miles, and the total height gained during
the route. The data are displayed in R as follows (abbreviated):

> hills

dist climb time

Greenmantle 2.5 650 16.083

Carnethy 6.0 2500 48.350

Craig Dunain 6.0 900 33.650

Ben Rha 7.5 800 45.600

Ben Lomond 8.0 3070 62.267

[...]

Cockleroi 4.5 850 28.100

Moffat Chase 20.0 5000 159.833

Consider a simple linear regression of time on dist and climb. Write down this
model mathematically, and explain any assumptions that you make. How would you
instruct R to fit this model and assign it to a variable hills.lm1?

First, we test the hypothesis of no linear relationship to the variables dist and
climb against the full model. R provides the following ANOVA summary:

Res.Df RSS Df Sum of Sq F Pr(>F)

1 34 85138

2 32 6892 2 78247 181.66 < 2.2e-16 ***

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Using the information in this table, explain carefully how you would test this hypothesis.
What do you conclude?

The R command

summary(hills.lm1)

provides the following (slightly abbreviated) summary:

[...]

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -8.992039 4.302734 -2.090 0.0447 *

dist 6.217956 0.601148 10.343 9.86e-12 ***

climb 0.011048 0.002051 5.387 6.45e-06 ***

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

[...]
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Carefully explain the information that appears in each column of the table. What
are your conclusions? In particular, how would you test for the significance of the variable
climb in this model?
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Figure 1: Hills data: diagnostic plots

Finally, we perform model diagnostics on the full model, by looking at studentised
residuals versus fitted values, and the normal QQ-plot. The plots are displayed in Figure 1.
Comment on possible sources of model misspecification. Is it possible that the problem
lies with the data? If so, what do you suggest?

Paper 4, Section II

13J Statistical Modelling
Consider the general linear model Y = Xβ + ǫ, where the n × p matrix X has

full rank p 6 n, and where ǫ has a multivariate normal distribution with mean zero
and covariance matrix σ2In. Write down the likelihood function for β, σ2 and derive the
maximum likelihood estimators β̂, σ̂2 of β, σ2. Find the distribution of β̂. Show further
that β̂ and σ̂2 are independent.
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Paper 1, Section I

5J Statistical Modelling
Consider a binomial generalised linear model for data y1, ..., yn modelled as realisa-

tions of independent Yi ∼ Bin(1, µi) and logit link µi = eβxi/(1 + eβxi) for some known
constants xi, i = 1, . . . , n, and unknown scalar parameter β. Find the log-likelihood for
β, and the likelihood equation that must be solved to find the maximum likelihood estim-
ator β̂ of β. Compute the second derivative of the log-likelihood for β, and explain the
algorithm you would use to find β̂.

Paper 2, Section I

5J Statistical Modelling
Suppose you have a parametric model consisting of probability mass functions

f(y; θ), θ ∈ Θ ⊂ R. Given a sample Y1, ..., Yn from f(y; θ), define the maximum likelihood
estimator θ̂n for θ and, assuming standard regularity conditions hold, state the asymptotic
distribution of

√
n (θ̂n − θ).

Compute the Fisher information of a single observation in the case where f(y; θ) is
the probability mass function of a Poisson random variable with parameter θ. If Y1, ..., Yn

are independent and identically distributed random variables having a Poisson distribution
with parameter θ, show that Ȳ = 1

n

∑n
i=1 Yi and S = 1

n−1

∑n
i=1(Yi − Ȳ )2 are unbiased

estimators for θ. Without calculating the variance of S , show that there is no reason to
prefer S over Y .

[You may use the fact that the asymptotic variance of
√
n (θ̂n − θ) is a lower bound for

the variance of any unbiased estimator.]

Paper 3, Section I

5J Statistical Modelling
Consider the linear model Y = Xβ + ε , where Y is a n × 1 random vector,

ε ∼ Nn(0, σ
2I) , and where the n× p nonrandom matrix X is known and has full column

rank p. Derive the maximum likelihood estimator σ̂ 2 of σ 2. Without using Cochran’s
theorem, show carefully that σ̂ 2 is biased. Suggest another estimator σ̃ 2 for σ 2 that is
unbiased.

Part II, 2010 List of Questions



85

Paper 4, Section I

5J Statistical Modelling
Below is a simplified 1993 dataset of US cars. The columns list index, make, model,

price (in $1000), miles per gallon, number of passengers, length and width in inches, and
weight (in pounds). The data are displayed in R as follows (abbreviated):

> cars

make model price mpg psngr length width weight

1 Acura Integra 15.9 31 5 177 68 2705

2 Acura Legend 33.9 25 5 195 71 3560

3 Audi 90 29.1 26 5 180 67 3375

4 Audi 100 37.7 26 6 193 70 3405

5 BMW 535i 30.0 30 4 186 69 3640

... ... ...

92 Volvo 240 22.7 28 5 190 67 2985

93 Volvo 850 26.7 28 5 184 69 3245

It is reasonable to assume that prices for different makes of car are independent. We model
the logarithm of the price as a linear combination of the other quantitative properties of
the cars and an error term. Write down this model mathematically. How would you
instruct R to fit this model and assign it to a variable “fit”?

R provides the following (slightly abbreviated) summary:

> summary(fit)

[...]

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 3.8751080 0.7687276 5.041 2.50e-06 ***

mpg -0.0109953 0.0085475 -1.286 0.201724

psngr -0.1782818 0.0290618 -6.135 2.45e-08 ***

length 0.0067382 0.0032890 2.049 0.043502 *

width -0.0517544 0.0151009 -3.427 0.000933 ***

weight 0.0008373 0.0001302 6.431 6.60e-09 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

[...]

Briefly explain the information that is being provided in each column of the table. What
are your conclusions and how would you try to improve the model?

Part II, 2010 List of Questions [TURN OVER



86

Paper 1, Section II

13J Statistical Modelling
Consider a generalised linear model with parameter β⊤ partitioned as (β⊤

0 , β
⊤
1 ),

where β0 has p0 components and β1 has p − p0 components, and consider testing
H0 : β1 = 0 against H1 : β1 6= 0 . Define carefully the deviance, and use it to construct a
test for H0 .

[You may use Wilks’ theorem to justify this test, and you may also assume that the
dispersion parameter is known.]

Now consider the generalised linear model with Poisson responses and the canonical
link function with linear predictor η = (η1, ..., ηn)

T given by ηi = x⊤i β , i = 1, ..., n ,
where x i1 = 1 for every i . Derive the deviance for this model, and argue that it may be
approximated by Pearson’s χ 2 statistic.
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Paper 4, Section II
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13J Statistical Modelling
Every day, Barney the darts player comes to our laboratory. We record his facial

expression, which can be either “mad”, “weird” or “relaxed”, as well as how many units
of beer he has drunk that day. Each day he tries a hundred times to hit the bull’s-eye,
and we write down how often he succeeds. The data look like this:

>

Day Beer Expression BullsEye

1 3 Mad 30

2 3 Mad 32
. . . .. . . .. . . .

60 2 Mad 37

61 4 Weird 30
. . . .. . . .. . . .

110 4 Weird 28

111 2 Relaxed 35
. . . .. . . .. . . .

150 3 Relaxed 31

Write down a reasonable model for Y1, . . . , Yn, where n = 150 and where Yi is the number
of times Barney has hit bull’s-eye on the ith day. Explain briefly why we may wish initially
to include interactions between the variables. Write the R code to fit your model.

The scientist of the above story fitted her own generalized linear model, and
subsequently obtained the following summary (abbreviated):

> summary(barney)

[...]

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.37258 0.05388 -6.916 4.66e-12 ***

Beer -0.09055 0.01595 -5.676 1.38e-08 ***

ExpressionWeird -0.10005 0.08044 -1.244 0.213570

ExpressionRelaxed 0.29881 0.08268 3.614 0.000301 ***

Beer:ExpressionWeird 0.03666 0.02364 1.551 0.120933

Beer:ExpressionRelaxed -0.07697 0.02845 -2.705 0.006825 **

[...]

Why are ExpressionMad and Beer:ExpressionMad not listed? Suppose on a particular
day, Barney’s facial expression is weird, and he drank three units of beer. Give the linear
predictor in the scientist’s model for this day.

Based on the summary, how could you improve your model? How could one fit this
new model in R (without modifying the data file)?
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Paper 1, Section I

5I Statistical Modelling

Consider a binomial generalised linear model for data y1, . . . , yn, modelled as

realisations of independent Yi ∼ Bin(1, µi) and logit link, i.e. log µi

1−µi
= βxi, for some

known constants x1, . . . , xn, and an unknown parameter β. Find the log-likelihood for β,

and the likelihood equations that must be solved to find the maximum likelihood estimator

β̂ of β.

Compute the first and second derivatives of the log-likelihood for β, and explain the

algorithm you would use to find β̂.

Paper 2, Section I

5I Statistical Modelling

What is meant by an exponential dispersion family? Show that the family of Poisson

distributions with parameter λ is an exponential dispersion family by explicitly identifying

the terms in the definition.

Find the corresponding variance function and deduce directly from your calculations

expressions for E(Y ) and Var(Y ) when Y ∼ Pois(λ).

What is the canonical link function in this case?

Paper 3, Section I

5I Statistical Modelling

Consider the linear model Y = Xβ + ε, where ε ∼ Nn(0, σ
2I) and X is an n × p

matrix of full rank p < n. Suppose that the parameter β is partitioned into k sets as

follows: β⊤ = (β⊤
1 · · · β⊤

k ). What does it mean for a pair of sets βi, βj , i 6= j, to be

orthogonal? What does it mean for all k sets to be mutually orthogonal?

In the model

Yi = β0 + β1xi1 + β2xi2 + εi

where εi ∼ N(0, σ2) are independent and identically distributed, find necessary and suffi-

cient conditions on x11, . . . , xn1, x12, . . . , xn2 for β0, β1 and β2 to be mutually orthogonal.

If β0, β1 and β2 are mutually orthogonal, what consequence does this have for the

joint distribution of the corresponding maximum likelihood estimators β̂0, β̂1 and β̂2?
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Paper 4, Section I

5I Statistical Modelling

Sulphur dioxide is one of the major air pollutants. A dataset by Sokal and Rohlf

(1981) was collected on 41 US cities/regions in 1969–1971. The annual measurements

obtained for each region include (average) sulphur dioxide content, temperature, number of

manufacturing enterprises employing more than 20 workers, population size in thousands,

wind speed, precipitation, and the number of days with precipitation. The data are

displayed in R as follows (abbreviated):

> usair

region so2 temp manuf pop wind precip days

1 Phoenix 10 70.3 213 582 6.0 7.05 36

2 Little Rock 13 61.0 91 132 8.2 48.52 100

... ... ...

41 Milwaukee 16 45.7 569 717 11.8 29.07 123

Describe the model being fitted by the following R commands.

> fit <- lm(log(so2) ~ temp + manuf + pop + wind + precip + days)

Explain the (slightly abbreviated) output below, describing in particular how the hypoth-

esis tests are performed and your conclusions based on their results:

> summary(fit)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 7.2532456 1.4483686 5.008 1.68e-05 ***

temp -0.0599017 0.0190138 -3.150 0.00339 **

manuf 0.0012639 0.0004820 2.622 0.01298 *

pop -0.0007077 0.0004632 -1.528 0.13580

wind -0.1697171 0.0555563 -3.055 0.00436 **

precip 0.0173723 0.0111036 1.565 0.12695

days 0.0004347 0.0049591 0.088 0.93066

Residual standard error: 0.448 on 34 degrees of freedom

Based on the summary above, suggest an alternative model.

Finally, what is the value obtained by the following command?

> sqrt(sum(resid(fit)^2)/fit$df)

Part II, 2009 List of Questions



87

Paper 1, Section II

13I Statistical Modelling

A three-year study was conducted on the survival status of patients suffering from

cancer. The age of the patients at the start of the study was recorded, as well as whether

or not the initial tumour was malignant. The data are tabulated in R as follows:

> cancer

age malignant survive die

1 <50 no 77 10

2 <50 yes 51 13

3 50-69 no 51 11

4 50-69 yes 38 20

5 70+ no 7 3

6 70+ yes 6 3

Describe the model that is being fitted by the following R commands:

> total <- survive + die

> fit1 <- glm(survive/total ~ age + malignant, family = binomial,

+ weights = total)

Explain the (slightly abbreviated) output from the code below, describing how the

hypothesis tests are performed and your conclusions based on their results.

> summary(fit1)

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 2.0730 0.2812 7.372 1.68e-13 ***

age50-69 -0.6318 0.3112 -2.030 0.0424 *

age70+ -0.9282 0.5504 -1.686 0.0917 .

malignantyes -0.7328 0.2985 -2.455 0.0141 *

----

Null deviance: 12.65585 on 5 degrees of freedom

Residual deviance: 0.49409 on 2 degrees of freedom

AIC: 30.433

Based on the summary above, motivate and describe the following alternative model:

> age2 <- as.factor(c("<50", "<50", "50+", "50+", "50+", "50+"))

> fit2 <- glm(survive/total ~ age2 + malignant, family = binomial,

+ weights = total)

This question continues on the next page
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Based on the output of the code that follows, which of the two models do you prefer?

Why?

> summary(fit2)

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 2.0721 0.2811 7.372 1.68e-13 ***

age250+ -0.6744 0.3000 -2.248 0.0246 *

malignantyes -0.7310 0.2983 -2.451 0.0143 *

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Null deviance: 12.656 on 5 degrees of freedom

Residual deviance: 0.784 on 3 degrees of freedom

AIC: 28.723

What is the final value obtained by the following commands?

> mu.hat <- inv.logit(predict(fit2))

> -2 * (sum(dbinom(survive, total, mu.hat, log = TRUE)

+ - sum(dbinom(survive, total, survive/total, log = TRUE)))

Paper 4, Section II

13I Statistical Modelling

Consider the linear model Y = Xβ + ε, where ε ∼ Nn(0, σ
2I) and X is an n × p

matrix of full rank p < n. Find the form of the maximum likelihood estimator β̂ of β, and

derive its distribution assuming that σ2 is known.

Assuming the prior π(β, σ2) ∝ σ−2 find the joint posterior of (β, σ2) up to a

normalising constant. Derive the posterior conditional distribution π(β|σ2,X, Y ).

Comment on the distribution of β̂ found above and the posterior conditional

π(β|σ2,X, Y ). Comment further on the predictive distribution of y∗ at input x∗ under

both the maximum likelihood and Bayesian approaches.
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1/I/5J Statistical Modelling

Consider the following Binomial generalized linear model for data y1, . . . , yn, with
logit link function. The data y1, . . . , yn are regarded as observed values of independent
random variables Y1, . . . , Yn, where

Yi ∼ Bin(1, µi), log
µi

1− µi = β>xi, i = 1, . . . , n,

where β is an unknown p-dimensional parameter, and where x1, . . . , xn are known p-
dimensional explanatory variables. Write down the likelihood function for y = (y1, . . . , yn)
under this model.

Show that the maximum likelihood estimate β̂ satisfies an equation of the form
X>y = X>µ̂, where X is the p × n matrix with rows x>1 , . . . , x

>
n , and where µ̂ =

(µ̂1, . . . , µ̂n), with µ̂i a function of xi and β̂, which you should specify.

Define the deviance D(y; µ̂) and find an explicit expression for D(y; µ̂) in terms of
y and µ̂ in the case of the model above.
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1/II/13J Statistical Modelling

Consider performing a two-way analysis of variance (ANOVA) on the following
data:

> Y[,,1] Y[,,2] Y[,,3]

[,1] [,2] [,1] [,2] [,1] [,2]

[1,] 2.72 6.66 [1,] -5.780 1.7200 [1,] -2.2900 0.158

[2,] 4.88 5.98 [2,] -4.600 1.9800 [2,] -3.1000 1.190

[3,] 3.49 8.81 [3,] -1.460 2.1500 [3,] -2.6300 1.190

[4,] 2.03 6.26 [4,] -1.780 0.7090 [4,] -0.2400 1.470

[5,] 2.39 8.50 [5,] -2.610 -0.5120 [5,] 0.0637 2.110

. . . . . . . . .

. . . . . . . . .

. . . . . . . . .

Explain and interpret the R commands and (slightly abbreviated) output below. In
particular, you should describe the model being fitted, and comment on the hypothesis
tests which are performed under the summary and anova commands.

> K <- dim(Y)[1]

> I <- dim(Y)[2]

> J <- dim(Y)[3]

> c(I,J,K)

[1] 2 3 10

> y <- as.vector(Y)

> a <- gl(I, K, length(y))

> b <- gl(J, K * I, length(y))

> fit1 <- lm(y ~ a + b)

> summary(fit1)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 3.7673 0.3032 12.43 < 2e-16 ***

a2 3.4542 0.3032 11.39 3.27e-16 ***

b2 -6.3215 0.3713 -17.03 < 2e-16 ***

b3 -5.8268 0.3713 -15.69 < 2e-16 ***

> anova(fit1)
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Response: y

Df Sum Sq Mean Sq F value Pr(>F)

a 1 178.98 178.98 129.83 3.272e-16 ***

b 2 494.39 247.19 179.31 < 2.2e-16 ***

Residuals 56 77.20 1.38

The following R code fits a similar model. Briefly explain the difference between
this model and the one above. Based on the output of the anova call below, say whether
you prefer this model over the one above, and explain your preference.

> fit2 <- lm(y ~ a * b)

> anova(fit2)

Response: y

Df Sum Sq Mean Sq F value Pr(>F)

a 1 178.98 178.98 125.6367 1.033e-15 ***

b 2 494.39 247.19 173.5241 < 2.2e-16 ***

a:b 2 0.27 0.14 0.0963 0.9084

Residuals 54 76.93 1.42

Finally, explain what is being calculated in the code below and give the value that
would be obtained by the final line of code.

> n <- I * J * K

> p <- length(coef(fit2))

> p0 <- length(coef(fit1))

> PY <- fitted(fit2)

> P0Y <- fitted(fit1)

> ((n - p)/(p - p0)) * sum((PY - P0Y)^2)/sum((y - PY)^2)
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2/I/5J Statistical Modelling

Suppose that we want to estimate the angles α, β and γ (in radians, say) of the
triangle ABC, based on a single independent measurement of the angle at each corner.
Suppose that the error in measuring each angle is normally distributed with mean zero
and variance σ2. Thus, we model our measurements yA, yB , yC as the observed values of
random variables

YA = α+ εA, YB = β + εB , YC = γ + εC ,

where εA, εB , εC are independent, each with distribution N(0, σ2). Find the maximum
likelihood estimate of α based on these measurements.

Can the assumption that εA, εB , εC ∼ N(0, σ2) be criticized? Why or why not?

3/I/5J Statistical Modelling

Consider the linear model Y = Xβ + ε. Here, Y is an n-dimensional vector of
observations, X is a known n× p matrix, β is an unknown p-dimensional parameter, and
ε ∼ Nn(0, σ2I), with σ2 unknown. Assume that X has full rank and that p� n. Suppose
that we are interested in checking the assumption ε ∼ Nn(0, σ2I). Let Ŷ = Xβ̂, where
β̂ is the maximum likelihood estimate of β. Write in terms of X an expression for the
projection matrix P = (pij : 1 6 i, j 6 n) which appears in the maximum likelihood
equation Ŷ = Xβ̂ = PY .

Find the distribution of ε̂ = Y − Ŷ , and show that, in general, the components of
ε̂ are not independent.

A standard procedure used to check our assumption on ε is to check whether the
studentized fitted residuals

η̂i =
ε̂i

σ̃
√

1− pii , i = 1, . . . , n,

look like a random sample from an N(0, 1) distribution. Here,

σ̃2 =
1

n− p ||Y −Xβ̂||
2.

Say, briefly, how you might do this in R.

This procedure appears to ignore the dependence between the components of ε̂
noted above. What feature of the given set-up makes this reasonable?
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4/I/5J Statistical Modelling

A long-term agricultural experiment had n = 90 grassland plots, each 25m × 25m,
differing in biomass, soil pH, and species richness (the count of species in the whole plot).
While it was well-known that species richness declines with increasing biomass, it was not
known how this relationship depends on soil pH. In the experiment, there were 30 plots of
“low pH”, 30 of “medium pH” and 30 of “high pH”. Three lines of the data are reproduced
here as an aid.

> grass[c(1,31, 61), ]

pH Biomass Species

1 high 0.4692972 30

31 mid 0.1757627 29

61 low 0.1008479 18

Briefly explain the commands below. That is, explain the models being fitted.

> fit1 <- glm(Species ~ Biomass, family = poisson)

> fit2 <- glm(Species ~ pH + Biomass, family = poisson)

> fit3 <- glm(Species ~ pH * Biomass, family = poisson)

Let H1, H2 and H3 denote the hypotheses represented by the three models and fits.
Based on the output of the code below, what hypotheses are being tested, and which of
the models seems to give the best fit to the data? Why?

> anova(fit1, fit2, fit3, test = "Chisq")

Analysis of Deviance Table

Model 1: Species ~ Biomass

Model 2: Species ~ pH + Biomass

Model 3: Species ~ pH * Biomass

Resid. Df Resid. Dev Df Deviance P(>|Chi|)

1 88 407.67

2 86 99.24 2 308.43 1.059e-67

3 84 83.20 2 16.04 3.288e-04

Finally, what is the value obtained by the following command?

> mu.hat <- exp(predict(fit2))

> -2 * (sum(dpois(Species, mu.hat, log = TRUE)) - sum(dpois(Species,

+ Species, log = TRUE)))
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4/II/13J Statistical Modelling

Consider the following generalized linear model for responses y1, . . . , yn as a function
of explanatory variables x1, . . . , xn, where xi = (xi1, . . . , xip)> for i = 1, . . . , n. The
responses are modelled as observed values of independent random variables Y1, . . . , Yn,
with

Yi ∼ ED(µi, σ2
i ), g(µi) = x>i β, σ2

i = σ2ai,

Here, g is a given link function, β and σ2 are unknown parameters, and the ai are treated
as known.

[Hint: recall that we write Y ∼ ED(µ, σ2) to mean that Y has density function of
the form

f(y;µ, σ2) = a(σ2, y) exp
{

1
σ2

[θ(µ)y −K(θ(µ))]
}

for given functions a and θ.]

[ You may use without proof the facts that, for such a random variable Y ,

E(Y ) = K ′(θ(µ)), var(Y ) = σ2K ′′(θ(µ)) ≡ σ2V (µ).]

Show that the score vector and Fisher information matrix have entries:

Uj(β) =
n∑
i=1

(yi − µi)xij
σ2
i V (µi)g′(µi)

, j = 1, . . . , p,

and

ijk(β) =
n∑
i=1

xijxik
σ2
i V (µi)(g′(µi))2

, j, k = 1, . . . , p.

How do these expressions simplify when the canonical link is used?

Explain briefly how these two expressions can be used to obtain the maximum
likelihood estimate β̂ for β.
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1/I/5I Statistical Modelling

According to the Independent newspaper (London, 8 March 1994) the Metropolitan
Police in London reported 30475 people as missing in the year ending March 1993. For
those aged 18 or less, 96 of 10527 missing males and 146 of 11363 missing females were
still missing a year later. For those aged 19 and above, the values were 157 of 5065 males
and 159 of 3520 females. This data is summarised in the table below.

age gender still total

1 Kid M 96 10527

2 Kid F 146 11363

3 Adult M 157 5065

4 Adult F 159 3520

Explain and interpret the R commands and (slightly abbreviated) output below.
You should describe the model being fitted, explain how the standard errors are calculated,
and comment on the hypothesis tests being described in the summary. In particular, what
is the worst of the four categories for the probability of remaining missing a year later?

> fit <- glm(still/total ~ age + gender, family = binomial,

+ weights = total)

> summary(fit)

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -3.06073 0.07216 -42.417 < 2e-16 ***

ageKid -1.27079 0.08698 -14.610 < 2e-16 ***

genderM -0.37211 0.08671 -4.291 1.78e-05 ***

Residual deviance: 0.06514 on 1 degrees of freedom

For a person who was missing in the year ending in March 1993, find a formula,
as a function of age and gender, for the estimated expected probability that they are still
missing a year later.
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1/II/13I Statistical Modelling

This problem deals with data collected as the number of each of two different strains
of Ceriodaphnia organisms are counted in a controlled environment in which reproduction
is occurring among the organisms. The experimenter places into the containers a varying
concentration of a particular component of jet fuel that impairs reproduction. Hence it
is anticipated that as the concentration of jet fuel grows, the mean number of organisms
should decrease.

The table below gives a subset of the data. The full dataset has n = 70 rows. The
first column provides the number of organisms, the second the concentration of jet fuel
(in grams per litre) and the third specifies the strain of the organism.

number fuel strain

82 0 1

58 0 0

45 0.5 1

27 0.5 0

29 0.75 1

15 1.25 1

6 1.25 1

8 1.5 0

4 1.75 0

. . .

. . .

Explain and interpret the R commands and (slightly abbreviated) output below. In
particular, you should describe the model being fitted, explain how the standard errors
are calculated, and comment on the hypothesis tests being described in the summary.

> fit1 <- glm(number ~ fuel + strain + fuel:strain,family = poisson)

> summary(fit1)

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 4.14443 0.05101 81.252 < 2e-16 ***

fuel -1.47253 0.07007 -21.015 < 2e-16 ***

strain 0.33667 0.06704 5.022 5.11e-07 ***

fuel:strain -0.12534 0.09385 -1.336 0.182

The following R code fits two very similar models. Briefly explain the difference
between these models and the one above. Motivate the fitting of these models in light of
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the summary from the fit of the one above.

> fit2 <- glm(number ~ fuel + strain, family = poisson)

> fit3 <- glm(number ~ fuel, family = poisson)

Denote by H1, H2, H3 the three hypotheses being fitted in sequence above.

Explain the hypothesis tests, including an approximate test of the fit of H1, that
can be performed using the output from the following R code. Use these numbers to
comment on the most appropriate model for the data.

> c(fit1$dev, fit2$dev, fit3$dev)

[1] 84.59557 86.37646 118.99503

> qchisq(0.95, df = 1)

[1] 3.841459

2/I/5I Statistical Modelling

Consider the linear regression setting where the responses Yi, i = 1, . . . , n are
assumed independent with means µi = xT

i β. Here xi is a vector of known explanatory
variables and β is a vector of unknown regression coefficients.

Show that if the response distribution is Laplace, i.e.,

Yi ∼ f(yi;µi, σ) = (2σ)−1 exp
{
−|yi − µi|

σ

}
, i = 1, . . . , n; yi, µi ∈ R; σ ∈ (0,∞);

then the maximum likelihood estimate β̂ of β is obtained by minimising

S1(β) =
n∑

i=1

|Yi − xT
i β|.

Obtain the maximum likelihood estimate for σ in terms of S1(β̂).

Briefly comment on why the Laplace distribution cannot be written in exponential
dispersion family form.
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3/I/5I Statistical Modelling

Consider two possible experiments giving rise to observed data yij where
i = 1, . . . , I, j = 1, . . . , J .

1. The data are realizations of independent Poisson random variables, i.e.,

Yij ∼ f1(yij ;µij) =
µ

yij

ij

yij !
exp{−µij}

where µij = µij(β), with β an unknown (possibly vector) parameter. Write β̂ for
the maximum likelihood estimator (m.l.e.) of β and ŷij = µij(β̂) for the (i, j)th
fitted value under this model.

2. The data are components of a realization of a multinomial random ‘vector’

Y ∼ f2((yij);n, (pij)) = n!
I∏

i=1

J∏
j=1

p
yij

ij

yij !

where the yij are non-negative integers with

I∑
i=1

J∑
j=1

yij = n and pij(β) =
µij(β)
n

.

Write β∗ for the m.l.e. of β and y∗ij = npij(β∗) for the (i, j)th fitted value under
this model.

Show that, if
I∑

i=1

J∑
j=1

ŷij = n ,

then β̂ = β∗ and ŷij = y∗ij for all i, j. Explain the relevance of this result in the context
of fitting multinomial models within a generalized linear model framework.
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4/I/5I Statistical Modelling

Consider the normal linear model Y = Xβ + ε in vector notation, where

Y =

 Y1
...
Yn

 , X =

xT
1
...
xT

n

 , β =

 β1
...
βp

 , ε =

 ε1
...
εn

 , εi ∼ i.i.d. N(0, σ2),

where xT
i = (xi1, . . . , xip) is known and X is of full rank (p < n). Give expressions for

maximum likelihood estimators β̂ and σ̂2 of β and σ2 respectively, and state their joint
distribution.

Suppose that there is a new pair (x∗, y∗), independent of (x1, y1), . . . , (xn, yn),
satisfying the relationship

y∗ = x∗Tβ + ε∗, where ε∗ ∼ N(0, σ2).

We suppose that x∗ is known, and estimate y∗ by ỹ = x∗Tβ̂. State the distribution of

ỹ − y∗

σ̃τ
, where σ̃2 =

n

n− p
σ̂2 and τ2 = x∗T(XTX)−1x∗ + 1.

Find the form of a (1− α)–level prediction interval for y∗.

4/II/13I Statistical Modelling

Let Y have a Gamma distribution with density

f(y;α, λ) =
λαyα−1

Γ(α)
e−λy .

Show that the Gamma distribution is of exponential dispersion family form. Deduce
directly the corresponding expressions for E[Y ] and Var[Y ] in terms of α and λ. What is
the canonical link function?

Let p < n. Consider a generalised linear model (g.l.m.) for responses yi, i = 1, . . . , n
with random component defined by the Gamma distribution with canonical link g(µ), so
that g(µi) = ηi = xT

i β, where β = (β1, . . . , βp)T is the vector of unknown regression
coefficients and xi = (xi1, . . . , xip)T is the vector of known values of the explanatory
variables for the ith observation, i = 1, . . . , n.

Obtain expressions for the score function and Fisher information matrix and explain
how these can be used in order to approximate β̂, the maximum likelihood estimator
(m.l.e.) of β.

[Use the canonical link function and assume that the dispersion parameter is known.]

Finally, obtain an expression for the deviance for a comparison of the full (sat-
urated) model to the g.l.m. with canonical link using the m.l.e. β̂ (or estimated mean
µ̂ = Xβ̂).
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1/I/5I Statistical Modelling

Assume that observations Y = (Y1, . . . , Yn)T satisfy the linear model

Y = Xβ + ε,

where X is an n×p matrix of known constants of full rank p < n, where β = (β1, . . . , βp)T

is unknown and ε ∼ Nn(0, σ2I). Write down a (1− α)-level confidence set for β.

Define Cook’s distance for the observation (xi, Yi), where xT
i is the ith row of X.

Give its interpretation in terms of confidence sets for β.

In the above model with n = 50 and p = 2, you observe that one observation has
Cook’s distance 1.3. Would you be concerned about the influence of this observation?

[You may find some of the following facts useful:
(i) If Z ∼ χ2

2, then P(Z 6 0.21) = 0.1, P(Z 6 1.39) = 0.5 and P(Z 6 4.61) = 0.9.
(ii) If Z ∼ F2,48, then P(Z 6 0.11) = 0.1, P(Z 6 0.70) = 0.5 and P(Z 6 2.42) = 0.9.
(iii) If Z ∼ F48,2, then P(Z 6 0.41) = 0.1, P(Z 6 1.42) = 0.5 and P(Z 6 9.47) = 0.9. ]
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1/II/13I Statistical Modelling

The table below gives a year-by-year summary of the career batting record of the
baseball player Babe Ruth. The first column gives his age at the start of each season and
the second gives the number of ‘At Bats’ (AB) he had during the season. For each At Bat,
it is recorded whether or not he scored a ‘Hit’. The third column gives the total number
of Hits he scored in the season, and the final column gives his ‘Average’ for the season,
defined as the number of Hits divided by the number of At Bats.

Age AB Hits Average

19 10 2 0.200

20 92 29 0.315

21 136 37 0.272

22 123 40 0.325

23 317 95 0.300

24 432 139 0.322

25 457 172 0.376

26 540 204 0.378

27 406 128 0.315

28 522 205 0.393

29 529 200 0.378

30 359 134 0.373

31 495 184 0.372

32 540 192 0.356

33 536 173 0.323

34 499 172 0.345

35 518 186 0.359

36 534 199 0.373

37 457 156 0.341

38 459 138 0.301

39 365 105 0.288

40 72 13 0.181
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Explain and interpret the R commands below. In particular, you should explain
the model that is being fitted, the approximation leading to the given standard errors and
the test that is being performed in the last line of output.

> Mod <- glm(Hits/AB~Age+I(Age^2),family=binomial,weights=AB)

> summary(Mod)

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -4.5406713 0.8487687 -5.350 8.81e-08 ***

Age 0.2684739 0.0565992 4.743 2.10e-06 ***

I(Age^2) -0.0044827 0.0009253 -4.845 1.27e-06 ***

Residual deviance: 23.345 on 19 degrees of freedom

Assuming that any required packages are loaded, draw a careful sketch of the graph
that you would expect to see on entering the following lines of code:

> Coef <- coef(Mod)

> Fitted <- inv.logit(Coef[[1]]+Coef[[2]]*Age+Coef[[3]]*Age^2)

> plot(Age,Average)

> lines(Age,Fitted)

2/I/5I Statistical Modelling

Let Y1, . . . , Yn be independent Poisson random variables with means µ1, . . . , µn, for
i = 1, . . . , n, where log(µi) = βxi, for some known constants xi and an unknown parameter
β. Find the log-likelihood for β.

By first computing the first and second derivatives of the log-likelihood for β,
explain the algorithm you would use to find the maximum likelihood estimator, β̂.
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3/I/5I Statistical Modelling

Consider a generalized linear model for independent observations Y1, . . . , Yn, with
E(Yi) = µi for i = 1, . . . , n. What is a linear predictor? What is meant by the link
function? If Yi has model function (or density) of the form

f(yi;µi, σ
2) = exp

[
1
σ2

{
θ(µi)yi −K(θ(µi))

}]
a(σ2, yi),

for yi ∈ Y ⊆ R, µi ∈ M ⊆ R, σ2 ∈ Φ ⊆ (0,∞), where a(σ2, yi) is a known positive
function, define the canonical link function.

Now suppose that Y1, . . . , Yn are independent with Yi ∼ Bin(1, µi) for i = 1, . . . , n.
Derive the canonical link function.
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4/I/5I Statistical Modelling

The table below summarises the yearly numbers of named storms in the Atlantic
basin over the period 1944–2004, and also gives an index of average July ocean temperature
in the northern hemisphere over the same period. To save space, only the data for the
first four and last four years are shown.

Year Storms Temp

1944 11 0.165

1945 11 0.080

1946 6 0.000

1947 9 -0.024

...
...

...

2001 15 0.592

2002 12 0.627

2003 16 0.608

2004 15 0.546

Explain and interpret the R commands and (slightly abbreviated) output below.

> Mod <- glm(Storms~Temp,family=poisson)

> summary(Mod)

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 2.26061 0.04841 46.697 < 2e-16 ***

Temp 0.48870 0.16973 2.879 0.00399 **

Residual deviance: 51.499 on 59 degrees of freedom

In 2005, the ocean temperature index was 0.743. Explain how you would predict
the number of named storms for that year.
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4/II/13I Statistical Modelling

Consider a linear model for Y = (Y1, . . . , Yn)T given by

Y = Xβ + ε,

where X is a known n × p matrix of full rank p < n, where β is an unknown vector and
ε ∼ Nn(0, σ2I). Derive an expression for the maximum likelihood estimator β̂ of β, and
write down its distribution.

Find also the maximum likelihood estimator σ̂2 of σ2, and derive its distribution.

[You may use Cochran’s theorem, provided that it is stated carefully. You may also assume
that the matrix P = X(XTX)−1XT has rank p, and that I − P has rank n− p.]
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1/I/5I Statistical Modelling

Suppose that Y1, . . . , Yn are independent random variables, and that Yi has prob-
ability density function

f(yi|θi, φ) = exp
[ (yiθi − b(θi))

φ
+ c(yi, φ)

]
.

Assume that E(Yi) = µi and that there is a known link function g(.) such that

g(µi) = βTxi ,

where x1, . . . , xn are known p-dimensional vectors and β is an unknown p-dimensional
parameter. Show that E(Yi) = b′(θi) and that, if `(β, φ) is the log-likelihood function
from the observations (y1, . . . , yn), then

∂`(β, φ)
∂β

=
n∑
1

(yi − µi)xi

g′(µi)Vi
,

where Vi is to be defined.

1/II/13I Statistical Modelling

The Independent, June 1999, under the headline ‘Tourists get hidden costs warn-
ings’ gave the following table of prices in pounds, called ‘How the resorts compared’.

Algarve 8.00 0.50 3.50 3.00 4.00 100.00

CostaDelSol 6.95 1.30 4.10 12.30 4.10 130.85

Majorca 10.25 1.45 5.35 6.15 3.30 122.20

Tenerife 12.30 1.25 4.90 3.70 2.90 130.85

Florida 15.60 1.90 5.05 5.00 2.50 114.00

Tunisia 10.90 1.40 5.45 1.90 2.75 218.10

Cyprus 11.60 1.20 5.95 3.00 3.60 149.45

Turkey 6.50 1.05 6.50 4.90 2.85 263.00

Corfu 5.20 1.05 3.75 4.20 2.50 137.60

Sorrento 7.70 1.40 6.30 8.75 4.75 215.40

Malta 11.20 0.70 4.55 8.00 4.80 87.85

Rhodes 6.30 1.05 5.20 3.15 2.70 261.30

Sicily 13.25 1.75 4.20 7.00 3.85 174.40

Madeira 10.25 0.70 5.10 6.85 6.85 153.70

Part II 2005



11

Here the column headings are, respectively: Three-course meal, Bottle of Beer,
Suntan Lotion, Taxi (5km), Film (24 exp), Car Hire (per week). Interpret the R
commands, and explain how to interpret the corresponding (slightly abbreviated) R output
given below. Your solution should include a careful statement of the underlying statistical
model, but you may quote without proof any distributional results required.

> price = scan("dresorts") ; price

> Goods = gl(6,1,length=84); Resort=gl(14,6,length=84)

> first.lm = lm(log(price) ~ Goods + Resort)

> summary(first.lm)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.8778 0.1629 11.527 < 2e-16

Goods2 -2.1084 0.1295 -16.286 < 2e-16

Goods3 -0.6343 0.1295 -4.900 6.69e-06

Goods4 -0.6284 0.1295 -4.854 7.92e-06

Goods5 -0.9679 0.1295 -7.476 2.49e-10

Goods6 2.8016 0.1295 21.640 < 2e-16

Resort2 0.4463 0.1978 2.257 0.02740

Resort3 0.4105 0.1978 2.076 0.04189

Resort4 0.3067 0.1978 1.551 0.12584

Resort5 0.4235 0.1978 2.142 0.03597

Resort6 0.2883 0.1978 1.458 0.14963

Resort7 0.3457 0.1978 1.748 0.08519

Resort8 0.3787 0.1978 1.915 0.05993

Resort9 0.0943 0.1978 0.477 0.63508

Resort10 0.5981 0.1978 3.025 0.00356

Resort11 0.3281 0.1978 1.659 0.10187

Resort12 0.2525 0.1978 1.277 0.20616

Resort13 0.5508 0.1978 2.785 0.00700

Resort14 0.4590 0.1978 2.321 0.02343

Residual standard error: 0.3425 on 65 degrees of freedom

Multiple R-Squared: 0.962
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2/I/5I Statistical Modelling

You see below three R commands, and the corresponding output (which is slightly
abbreviated). Explain the effects of the commands. How is the deviance defined, and why
do we have d.f.=7 in this case? Interpret the numerical values found in the output.

> n = scan()

3 5 16 12 11 34 37 51 56

> i = scan ()

1 2 3 4 5 6 7 8 9

> summary(glm(n~i,poisson))

deviance = 13.218

d.f. = 7

Coefficients:

Value Std.Error

(intercept) 1.363 0.2210

i 0.3106 0.0382

3/I/5I Statistical Modelling

Consider the model Y = Xβ + ε, where Y is an n-dimensional observation vector,
X is an n× p matrix of rank p, ε is an n-dimensional vector with components ε1, . . . , εn,
and ε1, . . . , εn are independently and normally distributed, each with mean 0 and variance
σ2.

(a) Let β̂ be the least-squares estimator of β. Show that

(XTX)β̂ = XTY

and find the distribution of β̂.

(b) Define Ŷ = Xβ̂. Show that Ŷ has distribution N(Xβ, σ2H), where H is a
matrix that you should define.

[You may quote without proof any results you require about the multivariate normal
distribution.]
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4/I/5I Statistical Modelling

You see below five R commands, and the corresponding output (which is slightly
abbreviated). Without giving any mathematical proofs, explain the purpose of these
commands, and interpret the output.

> Yes = c(12, 27,11,24)

> Total = c(117,170,52,118)

> Sclass = c("a","a","b","b")

> Sclass = factor(Sclass)

> summary(glm(Yes/Total~ Sclass, binomial, weights=Total))

Coefficients:

Estimate Std. Error z value

(Intercept) -1.8499 0.1723 -10.739

Sclassb 0.4999 0.2562 1.951

Residual deviance: 1.9369 on 2 degrees of freedom

Number of Fisher Scoring iterations: 4
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4/II/13I Statistical Modelling

(i) Suppose that Y1, . . . , Yn are independent random variables, and that Yi has
probability density function

f(yi|β, ν) =
(
νyi

µi

)ν

e−yiν/µi
1

Γ(ν)
1
yi

for yi > 0

where
1/µi = βTxi , for 1 6 i 6 n,

and x1, . . . , xn are given p-dimensional vectors, and ν is known.

Show that E(Yi) = µi and that var (Yi) = µ2
i /ν.

(ii) Find the equation for β̂, the maximum likelihood estimator of β, and suggest
an iterative scheme for its solution.

(iii) If p = 2, and xi =
(

1
zi

)
, find the large-sample distribution of β̂2. Write your

answer in terms of a, b, c and ν, where a, b, c are defined by

a =
∑

µ2
i , b =

∑
ziµ

2
i , c =

∑
z2
i µ

2
i .
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A1/13 Computational Statistics and Statistical Modelling

(i) Assume that the n-dimensional vector Y may be written as Y = Xβ+ ε, where X
is a given n× p matrix of rank p, β is an unknown vector, and

ε ∼ Nn(0, σ2I).

Let Q(β) = (Y − Xβ)T (Y − Xβ). Find β̂, the least-squares estimator of β, and state
without proof the joint distribution of β̂ and Q(β̂).

(ii) Now suppose that we have observations (Yij , 1 6 i 6 I, 1 6 j 6 J) and consider
the model

Ω : Yij = µ+ αi + βj + εij ,

where (αi), (βj) are fixed parameters with Σαi = 0, Σβj = 0, and (εij) may be assumed
independent normal variables, with εij ∼ N(0, σ2), where σ2 is unknown.

(a) Find (α̂i), (β̂j), the least-squares estimators of (αi), (βj).

(b) Find the least-squares estimators of (αi) under the hypothesis H0 : βj = 0 for
all j.

(c) Quoting any general theorems required, explain carefully how to test H0,
assuming Ω is true.

(d) What would be the effect of fitting the model Ω1 : Yij = µ+αi + βj + γij + εij ,
where now (αi), (βj), (γij) are all fixed unknown parameters, and (εij) has the distribution
given above?

A2/12 Computational Statistics and Statistical Modelling

(i) Suppose we have independent observations Y1, . . . , Yn, and we assume that for
i = 1, . . . , n, Yi is Poisson with mean µi, and log(µi) = βTxi, where x1, . . . , xn are given
covariate vectors each of dimension p, where β is an unknown vector of dimension p,
and p < n. Assuming that {x1, . . . , xn} span Rp, find the equation for β̂, the maximum
likelihood estimator of β, and write down the large-sample distribution of β̂.

(ii) A long-term agricultural experiment had 90 grassland plots, each 25m × 25m,
differing in biomass, soil pH, and species richness (the count of species in the whole plot).
While it was well-known that species richness declines with increasing biomass, it was not
known how this relationship depends on soil pH, which for the given study has possible
values “low”, “medium” or “high”, each taken 30 times. Explain the commands input, and
interpret the resulting output in the (slightly edited) R output below, in which “species”
represents the species count.

(The first and last 2 lines of the data are reproduced here as an aid. You may
assume that the factor pH has been correctly set up.)
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> species

pH Biomass Species

1 high 0.46929722 30

2 high 1.73087043 39

.......................

.......................

89 low 4.36454121 7

90 low 4.87050789 3

> summary(glm(Species ~Biomass, family = poisson))

Call:

glm(formula = Species ~ Biomass, family = poisson)

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 3.184094 0.039159 81.31 < 2e-16

Biomass -0.064441 0.009838 -6.55 5.74e-11

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 452.35 on 89 degrees of freedom

Residual deviance: 407.67 on 88 degrees of freedom

Number of Fisher Scoring iterations: 4

> summary(glm(Species ~pH*Biomass, family = poisson))

Call:

glm(formula = Species ~ pH * Biomass, family = poisson)

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 3.76812 0.06153 61.240 < 2e-16

pHlow -0.81557 0.10284 -7.931 2.18e-15

Question continues on next page.
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pHmid -0.33146 0.09217 -3.596 0.000323

Biomass -0.10713 0.01249 -8.577 < 2e-16

pHlow:Biomass -0.15503 0.04003 -3.873 0.000108

pHmid:Biomass -0.03189 0.02308 -1.382 0.166954

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 452.346 on 89 degrees of freedom

Residual deviance: 83.201 on 84 degrees of freedom

Number of Fisher Scoring iterations: 4
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A4/14 Computational Statistics and Statistical Modelling

Suppose that Y1, . . . , Yn are independent observations, with Yi having probability
density function of the following form

f(yi|θi, φ) = exp
[
yiθi − b(θi)

φ
+ c(yi, φ)

]
where E(Yi) = µi and g(µi) = βTxi. You should assume that g( ) is a known function,
and β, φ are unknown parameters, with φ > 0, and also x1, . . . , xn are given linearly
independent covariate vectors. Show that

∂`

∂β
=

∑ (yi − βi)
g′(µi)Vi

xi,

where ` is the log-likelihood and Vi = var (Yi) = φb′′(θi).

Discuss carefully the (slightly edited) R output given below, and briefly suggest
another possible method of analysis using the function glm ( ).

> s <- scan()

1: 33 63 157 38 108 159

7:

Read 6 items

> r <- scan()

1: 3271 7256 5065 2486 8877 3520

7:

Read 6 items

> gender <- scan(,"")

1: b b b g g g

7:

Read 6 items

> age <- scan(,"")

1: 13&under 14-18 19&over

4: 13&under 14-18 19&over

7:

Read 6 items

> gender <- factor(gender) ; age <- factor(age)

> summary(glm(s/r ~ gender + age,binomial, weights=r))

Coefficients:

Question continues on next page.
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Estimate Std.Error z-value Pr(>|z|)

(Intercept) -4.56479 0.12783 -35.710 < 2e-16

genderg 0.38028 0.08689 4.377 1.21e-05

age14-18 -0.19797 0.14241 -1.390 0.164

age19&over 1.12790 0.13252 8.511 < 2e-16

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 221.797542 on 5 degrees of freedom

Residual deviance: 0.098749 on 2 degrees of freedom

Number of Fisher Scoring iterations: 3
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A1/13 Computational Statistics and Statistical Modelling

(i) Suppose Yi, 1 6 i 6 n, are independent binomial observations, with Yi ∼ Bi(ti, πi),
1 6 i 6 n, where t1, . . . , tn are known, and we wish to fit the model

ω : log
πi

1− πi
= µ+ βTxi for each i,

where x1, . . . , xn are given covariates, each of dimension p. Let µ̂, β̂ be the maximum
likelihood estimators of µ, β. Derive equations for µ̂, β̂ and state without proof the form
of the approximate distribution of β̂.

(ii) In 1975, data were collected on the 3-year survival status of patients suffering from
a type of cancer, yielding the following table

survive?
age in years malignant yes no

under 50 no 77 10
under 50 yes 51 13

50-69 no 51 11
50-69 yes 38 20
70+ no 7 3
70+ yes 6 3

Here the second column represents whether the initial tumour was not malignant or was
malignant.

Let Yij be the number surviving, for age group i and malignancy status j, for
i = 1, 2, 3 and j = 1, 2, and let tij be the corresponding total number. Thus Y11 = 77,
t11 = 87. Assume Yij ∼ Bi(tij , πij), 1 6 i 6 3, 1 6 j 6 2. The results from fitting the
model

log(πij/(1− πij)) = µ+ αi + βj

with α1 = 0, β1 = 0 give β̂2 = −0.7328 (se = 0.2985), and deviance = 0.4941. What do
you conclude?

Why do we take α1 = 0, β1 = 0 in the model?

What “residuals” should you compute, and to which distribution would you refer
them?
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A2/12 Computational Statistics and Statistical Modelling

(i) Suppose Y1, . . . , Yn are independent Poisson variables, and

E(Yi) = µi , logµi = α+ βti , for i = 1, . . . , n ,

where α, β are two unknown parameters, and t1, . . . , tn are given covariates, each of
dimension 1. Find equations for α̂, β̂, the maximum likelihood estimators of α, β, and
show how an estimate of var(β̂) may be derived, quoting any standard theorems you may
need.

(ii) By 31 December 2001, the number of new vCJD patients, classified by reported
calendar year of onset, were

8, 10, 11, 14, 17, 29, 23

for the years
1994, . . . , 2000 respectively.

Discuss carefully the (slightly edited) R output for these data given below, quoting
any standard theorems you may need.

> year

year

[1] 1994 1995 1996 1997 1998 1999 2000

> tot

[1] 8 10 11 14 17 29 23

>first.glm _ glm(tot ~ year, family = poisson)

> summary(first.glm)

Call:

glm(formula = tot ~ year, family = poisson)

Coefficients

Estimate Std. Error z value Pr(>|z|)

(Intercept) -407.81285 99.35366 -4.105 4.05e-05

year 0.20556 0.04973 4.133 3.57e-05

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 20.7753 on 6 degrees of freedom

Residual deviance: 2.7931 on 5 degrees of freedom

Number of Fisher Scoring iterations: 3
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A4/14 Computational Statistics and Statistical Modelling

The nave height x, and the nave length y for 16 Gothic-style cathedrals and 9
Romanesque-style cathedrals, all in England, have been recorded, and the corresponding
R output (slightly edited) is given below.

> first.lm _ lm(y ~ x + Style); summary(first.lm)

Call:

lm(formula = y ~ x + Style)

Residuals:

Min 1Q Median 3Q Max

-172.67 -30.44 20.38 55.02 96.50

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 44.298 81.648 0.543 0.5929

x 4.712 1.058 4.452 0.0002

Style2 80.393 32.306 2.488 0.0209

Residual standard error: 77.53 on 22 degrees of freedom

Multiple R-Squared: 0.5384

You may assume that x, y are in suitable units, and that “style” has been set up
as a factor with levels 1,2 corresponding to Gothic, Romanesque respectively.

(a) Explain carefully, with suitable graph(s) if necessary, the results of this analysis.

(b) Using the general model Y = Xβ + ε (in the conventional notation) explain
carefully the theory needed for (a).

[Standard theorems need not be proved.]
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A1/13 Computational Statistics and Statistical Modelling

(i) Suppose Y1, . . . , Yn are independent Poisson variables, and

E(Yi) = µi , logµi = α+ βTxi , 1 6 i 6 n

where α, β are unknown parameters, and x1, . . . , xn are given covariates, each of dimension
p. Obtain the maximum-likelihood equations for α, β, and explain briefly how you would
check the validity of this model.

(ii) The data below show y1, . . . , y33, which are the monthly accident counts on a
major US highway for each of the 12 months of 1970, then for each of the 12 months of
1971, and finally for the first 9 months of 1972. The data-set is followed by the (slightly
edited) R output. You may assume that the factors ‘Year’ and ‘month’ have been set up
in the appropriate fashion. Give a careful interpretation of this R output, and explain (a)
how you would derive the corresponding standardised residuals, and (b) how you would
predict the number of accidents in October 1972.

52 37 49 29 31 32 28 34 32 39 50 63
35 22 27 27 34 23 42 30 36 56 48 40
33 26 31 25 23 20 25 20 36

> first.glm glm(y∼ Year + month, poisson) ; summary(first.glm)

Call:

glm(formula = y ∼ Year + month, family = poisson)

Coefficients:
Estimate Std. Error z value Pr(> |z|)

(Intercept) 3.81969 0.09896 38.600 < 2e− 16 ***
Year1971 -0.12516 0.06694 -1.870 0.061521 .
Year1972 -0.28794 0.08267 -3.483 0.000496 ***
month2 -0.34484 0.14176 -2.433 0.014994 *
month3 -0.11466 0.13296 -0.862 0.388459
month4 -0.39304 0.14380 -2.733 0.006271 **
month5 -0.31015 0.14034 -2.210 0.027108 *
month6 -0.47000 0.14719 -3.193 0.001408 **
month7 -0.23361 0.13732 -1.701 0.088889 .
month8 -0.35667 0.14226 -2.507 0.012168 *
month9 -0.14310 0.13397 -1.068 0.285444
month10 0.10167 0.13903 0.731 0.464628
month11 0.13276 0.13788 0.963 0.335639
month12 0.18252 0.13607 1.341 0.179812

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 101.143 on 32 degrees of freedom
Residual deviance: 27.273 on 19 degrees of freedom

Number of Fisher Scoring iterations: 3
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A2/12 Computational Statistics and Statistical Modelling

(i) Suppose that the random variable Y has density function of the form

f(y|θ, φ) = exp
[
yθ − b(θ)

φ
+ c(y, φ)

]
where φ > 0. Show that Y has expectation b′(θ) and variance φb′′(θ).

(ii) Suppose now that Y1, . . . , Yn are independent negative exponential variables, with
Yi having density function f(yi|µi) = 1

µi
e−yi/µi for yi > 0. Suppose further that

g(µi) = βTxi for 1 6 i 6 n, where g(·) is a known ‘link’ function, and x1, . . . , xn are
given covariate vectors, each of dimension p. Discuss carefully the problem of finding β̂,
the maximum-likelihood estimator of β, firstly for the case g(µi) = 1/µi, and secondly for
the case g(µ) = logµi; in both cases you should state the large-sample distribution of β̂.

[Any standard theorems used need not be proved.]

A4/14 Computational Statistics and Statistical Modelling

Assume that the n-dimensional observation vector Y may be written as Y = Xβ+ε,
where X is a given n×p matrix of rank p, β is an unknown vector, with βT = (β1, . . . , βp),
and

ε ∼ Nn(0, σ2I) (∗)

where σ2 is unknown. Find β̂, the least-squares estimator of β, and describe (without
proof) how you would test

H0 : βν = 0

for a given ν.

Indicate briefly two plots that you could use as a check of the assumption (∗).
Continued opposite
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Sulphur dioxide is one of the major air pollutants. A data-set presented by Sokal
and Rohlf (1981) was collected on 41 US cities in 1969-71, corresponding to the following
variables:

Y = sulphur dioxide content of air in micrograms per cubic metre

X1 = average annual temperature in degrees Fahrenheit

X2 = number of manufacturing enterprises employing 20 or more workers

X3 = population size (1970 census) in thousands

X4 = average annual wind speed in miles per hour

X5 = average annual precipitation in inches

X6 = average annual of days with precipitation per year.

Interpret the R output that follows below, quoting any standard theorems that you
need to use.

> next.lm lm(log(Y) ∼ X1 + X2 + X3 + X4 + X5 + X6)

> summary(next.lm)

Call: lm(formula = log(Y) ∼ X1 + X2 + X3 + X4 + X5 + X6)

Residuals:
Min 1Q Median 3Q Max

-0.79548 -0.25538 -0.01968 0.28328 0.98029

Coefficients:
Estimate Std. Error t value Pr(> |t|)

(Intercept) 7.2532456 1.4483686 5.008 1.68e-05 ***
X1 -0.0599017 0.0190138 -3.150 0.00339 **
X2 0.0012639 0.0004820 2.622 0.01298 *
X3 -0.0007077 0.0004632 -1.528 0.13580
X4 -0.1697171 0.0555563 -3.055 0.00436 **
X5 0.0173723 0.0111036 1.565 0.12695
X6 0.0004347 0.0049591 0.088 0.93066

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’

Residual standard error: 0.448 on 34 degrees of freedom

Multiple R-Squared: 0.6541

F-statistic: 10.72 on 6 and 34 degrees of freedom, p-value: 1.126e-06
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A1/13 Computational Statistics and Statistical Modelling

(i) Assume that the n-dimensional observation vector Y may be written as

Y = Xβ + ε ,

where X is a given n× p matrix of rank p, β is an unknown vector, and

ε ∼ Nn(0, σ2I).

Let Q(β) = (Y −Xβ)T (Y −Xβ). Find β̂, the least-squares estimator of β, and show that

Q(β̂) = Y T (I −H)Y ,

where H is a matrix that you should define.

(ii) Show that
∑
iHii = p. Show further for the special case of

Yi = β1 + β2xi + β3zi + εi, 1 6 i 6 n,

where Σxi = 0, Σzi = 0, that

H =
1
n
11T + axxT + b(xzT + zxT ) + czzT ;

here, 1 is a vector of which every element is one, and a, b, c, are constants that you should
derive.

Hence show that, if Ŷ = Xβ̂ is the vector of fitted values, then

1
σ2

var(Ŷi) =
1
n

+ ax2
i + 2bxizi + cz2

i , 1 6 i 6 n.
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A2/12 Computational Statistics and Statistical Modelling

(i) Suppose that Y1, . . . , Yn are independent random variables, and that Yi has
probability density function

f(yi|θi, φ) = exp[(yiθi − b(θi))/φ+ c(yi, φ)].

Assume that E(Yi) = µi, and that g(µi) = βTxi, where g(·) is a known ‘link’ function,
x1, . . . , xn are known covariates, and β is an unknown vector. Show that

E(Yi) = b′(θi), var(Yi) = φb′′(θi) = Vi, say,

and hence

∂l

∂β
=

n∑
i=1

(yi − µi)xi
g′(µi)Vi

, where l = l(β, φ) is the log-likelihood.

(ii) The table below shows the number of train miles (in millions) and the number of
collisions involving British Rail passenger trains between 1970 and 1984. Give a detailed
interpretation of the R output that is shown under this table:

year collisions miles
1 1970 3 281
2 1971 6 276
3 1972 4 268
4 1973 7 269
5 1974 6 281
6 1975 2 271
7 1976 2 265
8 1977 4 264
9 1978 1 267
10 1979 7 265
11 1980 3 267
12 1981 5 260
13 1982 6 231
14 1983 1 249

Call:

glm(formula = collisions ∼ year + log(miles), family = poisson)

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 127.14453 121.37796 1.048 0.295
year -0.05398 0.05175 -1.043 0.297
log(miles) -3.41654 4.18616 -0.816 0.414

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 15.937 on 13 degrees of freedom

Residual deviance: 14.843 on 11 degrees of freedom

Number of Fisher Scoring iterations: 4
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A4/14 Computational Statistics and Statistical Modelling

(i) Assume that independent observations Y1, . . . , Yn are such that

Yi ∼ Binomial(ti, πi), log
πi

1− πi
= βTxi for 1 6 i 6 n ,

where x1, . . . , xn are given covariates. Discuss carefully how to estimate β, and how to
test that the model fits.

(ii) Carmichael et al. (1989) collected data on the numbers of 5-year old children
with “dmft”, i.e. with 5 or more decayed, missing or filled teeth, classified by social class,
and by whether or not their tap water was fluoridated or non-fluoridated. The numbers
of such children with dmft, and the total numbers, are given in the table below:

dmft
Social Class Fluoridated Non-fluoridated
I 12/117 12/56
II 26/170 48/146
III 11/52 29/64
Unclassified 24/118 49/104

A (slightly edited) version of the R output is given below. Explain carefully what
model is being fitted, whether it does actually fit, and what the parameter estimates and
Std. Errors are telling you. (You may assume that the factors SClass (social class) and
Fl (with/without) have been correctly set up.)

Call:

glm(formula = Yes/Total ∼ SClass + Fl, family = binomial,
weights = Total)

Coefficients:

Estimate Std. Error z value
(Intercept) -2.2716 0.2396 -9.480
SClassII 0.5099 0.2628 1.940
SClassIII 0.9857 0.3021 3.262
SClassUnc 1.0020 0.2684 3.734
Flwithout 1.0813 0.1694 6.383

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 68.53785 on 7 degrees of freedom

Residual deviance: 0.64225 on 3 degrees of freedom

Number of Fisher Scoring iterations: 3

Here ‘Yes’ is the vector of numbers with dmft, taking values 12, 12, . . . , 24, 49,
‘Total’ is the vector of Total in each category, taking values 117, 56, . . . , 118, 104, and
SClass, Fl are the factors corresponding to Social class and Fluoride status, defined in the
obvious way.
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